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SUMMARY

OBJECTIVE

Search for tools or ideas that could be used to aid in the development of the Air Strike
Planning Advisor (ASPA) system. Review current literature.

RESULTS

Found many interesting and useful tools. However, none could be applied directly to
solving the problem of acquiring knowledge for the ASPA.

RECOMMENDATIONS

Develop a tool based on constraint satisfaction problem solving. Draw upon work in
progress at the University of California, Los Angeles (UCLA) which focuses on converting
some constraint graphs to trees. Make these conversions the basis for generating optimal
orderings for making decisions in constructing plans.



INTRODUCTION

We are living proof that knowledge acquisition is possible

PROBLEM

Expert systems, i.e., computer systems capable of performing tasks normally performed by
human experts, are in great demand. Currently, the largest single problem in developing such
systems is knowledge acquisition (KA). In addition to the time spent in computer
programming, building an expert system may take months or years of work on the part of
knowledge engineers who collect and organize the knowledge, and the human experts who
provide the knowledge.

OBJECTIVE

The objective of the work described in this report was to search for tools or ideas that
could be used to aid in the development of the Air Strike Planning Advisor (ASPA) system.

APPROACH

The approach was to search for ideas and techniques that could be used to facilitate KA.
An effort was made to show how these ideas could be used to gather and refine knowledge for
eventual use by expert systems.

Because this is a new technology, it will be necessary to refine, elaborate, and quantify
many of the ideas covered here before they can be used. Tools and ideas that did not appear to
have any direct or indirect application to ASPA have not been described here.

RELATED DOCUMENTS

NOSC Technical Report 1094, "Knowledge Acquisition Methodology," discusses the
knowledge acquisition problems from the standpoint of the social sciences.

BACKGROUND

Because of the newness and complexity of the knowledge acquisition problem, the
background of the knowledge acquisition problem is discussed in detail in the following two
sections.
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AN OVERVIEW OF EXPERT SYSTEMS

DIFFERENCES BETWEEN CONVENTIONAL AND EXPERT SYSTEMS

Flexibility. In conventional systems, fixed programs operate on expected data in known
formats. In expert systems, the system is often data- or event-driven in the sense that patterns
in the data control the selection of code to be activated. Conventional systems are flexible
enough to handle more than one set of input data for a particular type of task, but they cannot
handle more than one type of task.

Explicitness of knowledge. The performance of conventional systems is accomplished by
knowledge which, although built into the system, is not explicitly stated. It is difficult to add
new knowledge to such a system because alterations may be needed throughout to achieve the
correct changes in how the system operates on the data. In contrast, knowledge-based expert
systems generally contain explicit representations of the knowledge responsible for their
performance. New knowledge can be added in one place with confidence that it will be
correctly integrated into the functioning of the system. Several people can contribute knowl-
edge to such a system. Thus, expert systems may be a repository of knowledge accumulated
from specialists with diverse experience, so the system may ultimately attain a level of expertise
exceeding that of any of its "tutors."

Self-improvement. In conventional systems, it is necessary to rewrite and recompile the
system to get it to do something differently; in knowledge-based systems, the modularity of
control structures, data, and heuristics for manipulating data make it possible to run the system
with different sets of heuristics for comparison in an effort to evolve those heuristics into an
improved set. Michalski & Chilausky (1980b) describe a system for diagnosing soybean i
diseases in which rules devised by a plant pathologist were compared with rules generated by
machine on the basis of examples. In handling soybean data, consisting of 19 diseases with 35
descriptors (domain sizes from 2 to 7 characters) on 307 cases, the system, in its two different
forms, was presented with a test set of 376 new cases. The version with the plant pathologists'
original rules yielded an accuracy of 83 percent on the test set. The version with the machine-
generated rules yielded an accuracy of better than 99 percent.

Man-machine interface. Conventional systems provide users with a single mode of usage
in which the user is the client. However, expert systems allow the user to be a tutor, thus
improving and extending the knowledge in the system, or a pupil. In this mode, the knowledge
in the expert system can be harvested for human use by obtaining explanations as a result of
challenging and examining the reasoning processes used in obtaining answers; the system may
be used to train new human experts; and the system may be used to encourage the exposure
and refinement of hitherto private heuristic knowledge. The kind of study, critique, and explicit
teaching that takes place for other scientific knowledge is possible for the heuristics of a field as
well.

ARCHITECTURE OF EXPERT SYSTEMS

The software for conventional systems is usually divided into two parts: program and data.il
The software for expert systems usually contains three parts: data, knowledge base, and control. .r

3
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Data. The data are in data structures that are examined and modified by the system as
progress is made in solving the problem. This component is analogous to short-term memory,
even if some data remains unchanged for long periods of time. It is sometimes called the global
database or blackboard because it is accessible to all parts of the program.

Knowledge Base. The knowledge base contains information about the domain and rules
(heuristics) for manipulating the information, that is, the reasoning techniques used in the
domain. The information and rules taken together constitute the domain knowledge. The rules
include both the hard and fast rules (regulations, specifications, etc.), and rules of thumb
(judgemental rules of the field and rules of good practice). To some extent, the knowledge may
be experimental and uncertain. The rules are of the sort humans learn during internships,
Ph.D. programs, and apprenticeships, or rules which they develop over years of experience in a
field.'

The rules are usually entered into the computer as "production rules." The simplest
production rules have the form: IF such-and-such condition exists, THEN perform such-and-
such. Production rules have been called operations, inference rules, antecedent-consequent
pairs, condition-action pairs, production, situation-action pairs, and knowledge-based rules.
When the data satisfies the antecedent condition, we say there is a pattern match. Rules do not
"call" other rules as subroutines do in conventional programming. This part of the program is
analogous to long-term memory. The whole knowledge-based system is sometimes cor-
respondingly called a rule-based system, a production system, or a pattern-directed inference
system.

Control. The control part of the expert system--sometimes called the inference engine--
performs scheduling, selection, conflict resolution, and activation of the production rules. The
amount of control structure may vary from virtually nothing to a complete algorithm. The
control structure is sometimes called the inference engine. Both deductive and inductive
inference can be simulated. Repeated applications of Bayes theorem to combine conditional
probabilities of various events are used in some systems.

The control structure is generally independent of the knowledge base, thus, it is sometimes
possible to use the control structure as a shell within which a new expert system can be
developed.

SHELLS %

Expert system shells are essentially the control part of an expert system without its data or r
knowledge base. Using shells facilitates the development of families of expert systems.
EMYCIN was constructed using the control structure from MYCIN, an expert system for
diagnosing and treating bacterial infections of the blood. The inference engine from EMYCIN
was used with expert knowledge in the domain of pulmonary function diagnosis to create
PUFF, a system for interpreting lung tests. It was also used to build SACON (for structural
analysis) and CLOT (to study blood clotting).

The expert systems shell EXPERT was created by removing the data and knowledge base
from CASNET, a system for medical diagnosis.

4



The shells just described are sometimes called domain-independent expert systems. All of
them provide a single-knowledge representation and inference mechanism. Starting with one of
these "empty" expert systems can accelerate the process of building an expert system, since
some of the development work has already been done, and some of the decisions among
alternatives for knowledge representation are made by the choice of an expert system shell.

ADVISORY SYSTEMS

Advisory systems are expert systems that are designed to give advice rather than to actually
perform a task. Advisory systems can be used to perform the following tasks:

1. Simulate decision-making processes.

2. Suggest the n best approaches, or generate the n best plans.

3. Uncover issues and factors to weigh in making critical decisions associated with a task.

4. Assess the users' plans.

5. Critique the best known approach to encourage its evolution into a better one.

6. Elaborate on the implications of high-level decisions, especially where estimatirg the
effects of these decisions requires significant amounts of computation.

7. Suggest alternate solutions or approaches, discussing the risks and benefits of each,
and rating them by predetermined criteria.

The most advanced general purpose advisory system is a decision analyst--GODDESS--
developed at UCLA.

AN OVERVIEW OF KNOWLEDGE ACQUISITION

USES OF KNOWLEDGE ACQUISITION (KA) TOOLS

The KA tools currently available have been designed to facilitate the process of KA, not to
replace human knowledge engineers. In fact, for many years to come the primary users of KA
tools will be the knowledge engineers, not the domain experts.

KA tools are wd to perform these tasks:

1. Speed the acquisition of knowledge.

2. Improve the quality of knowledge.

3. Elicit knowledge which may he difficult to articulate.

,"5
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4. Detect inconsistencies, conflicts, and ambiguities in knowledge. ,

5. Recognize gaps in knowledge.

6. Provide feedback to the expert problem solver to obtain clarifications in cases where .

the system's interpretation of newly acquired information may be at variance with the
expert's interpretation.

7. Protect against inappropriate use of knowledge.

8. Protect against clerical and other errors in entering information into the machine. -

KINDS OF KNOWLEDGE

There are many kinds of knowledge used in solving real-world problems. Appendix A
contains a list of kinds of metaknowledge and Appendix B lists kinds of general and domain
specific knowledge. ',

IDENTIFYING KNOWLEDGE FOR USE IN EXPERT SYSTEMS
,S

At first glance, KA appears to be concerned only with developing techniques to assist the
expert and knowledge engineer in entering knowledge into its machine representations to
produce expert performance. However, this view is too narrow. The principal difficulty in

knowledge acquisition is not in translating knowledge into machine processable forms, but in
finding out what knowledge should be obtained and placed in the machine to produce the
desired performance.

This is an especially irksome problem for knowledge engineers because the domain cxperts
are seldom able to present their knowledge in an orderly, consistent, and complete way
Furthermore, it usually requires a great deal of effort to separate the relevant knowledge trom
the experts' other knowledge.

PROBLEMS OF KNOWLEDGE ACQUISITION

The phrase, "knowledge acquisition," has been used in a variety of ways to encompass
different problems, including those listed here:

1. Given the expert and the problem, find out what knowledge possessed by the expert is
used in handling the problem.

2. Given the expert and a domain of problem tasks, find out what knowledge the expert
has to have to be able to handle any of those problem tasks.

3. Given pre-identified knowledge of the domain and the problem tasks, find
representations of the knowledge which will support the solution of the problems in
the machine.

0%
kr
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4. Given pre-identified knowledge of the domain and pre-identified representations, find
a technique for transferring the knowledge from one to the other.

5. Given pre-identified knowledge, an established transfer method, and representation,
find a technique to assure the accuracy of the system's interpretation of the
transferred knowledge.

EXPERTISE

The information and skills that make up the kinds of knowledge we refer to as expertise
are difficult to express in discrete, concrete, and machine-usable terms. Difficulties arise in this
process because domain experts typically employ "compiled" knowledge--shortcuts--in their own
problem solving activities. The "compiled" knowledge tends to be harder to articulate and
explain, particularly to someone not familiar with the domain. Less expert practitioners in a
domain can often explain the principles behind their decisions more readily than the experts
can. This may be because they do not have enough experience to have devised the shortcuts in
thinking which are typical of the true experts.

These shortcuts, of course, are just what is needed to constrain search in problem solving,
and techniques for knowledge acquisition must be oriented to capture knowledge of this form.

FORMULATING PROBLEMS

When building expert systems, decisions are needed on problem formulation and, in the
context of those formulations, techniques for identifying knowledge, for acquiring it, for
organizing it, for representing it, and for compiling it for efficient use by machine.

Devising a system for formulating problems can help system builders identify relevant
knowledge. The need to accommodate shifts in problem formulation, which may be essential to
performance efficiency of the completed system, may complicate the representation of the
system's knowledge. Ideally, a knowledge acquisition tool would be able to request reformula-
tions of a given problem, and be able to choose among them.

VOCABULARY

The knowledge engineer must begin the acquisition of knowledge for a new field as a
novice. Unfortunately, the vocabulary used to discuss a problem with a novice is not alwaysV
adequate for solving the problem (Buchanan et al., 1983). Some features of the domain may be
abstractions for which the expert has no names. These features, nonetheless, need to beI
identified, articulated, and represented.

STEPS IN KNOWLEDGE ACQUISITION

The knowledge acquisition process typically includes the following steps:

1. Identify the knowledge available and the knowledge that will be required.

7



a. Identify the range and characteristics of problems the system will handle.

b. Identify primitive terms and concepts.

c. Identify strategies for handling the problems.

d. Identify data sources the domain expert draws from during problem solving.

e. Identify tasks and subtasks associated with the problems.

f. Identify which parts of the information will need to be reworked into forms that
will make it usable.

2. Choose and implement formalisms for expressing knowledge.

a. Design a structure for organizing the knowledge.

b. Choose languages and tools.

c. Choose knowledge representations for all the different types of knowledge
encountered, taking care to match the representation with what is expressed and
with the way it will be used in the system.

3. Transfer identified knowledge into formalisms.

4. Validate the KA process, i.e., determine whether the knowledge functions as expected
in the system.

a. Ensure the consistency of the acquired knowledge.

b. Verify the knowledge to eliminate errors.

c. Eliminate redundancies and redundant information to improve efficiency.

d. Ensure that unanticipated interactions between parts of the system do not preventI
it from using the knowledge it contains appropriately.

e. Ensure that the knowledge is complete with respect to the tasks that the system
must perform.

The steps given above must not be thought of as sequential steps since there is an
enormous amount of feedback among them and the other tasks associated with developing the
system. The standard process of expert system development is a repetitive one of generating
and testing systems which grow incrementally from an initial minimal system to one containing
the appropriate domain knowledge for adequate performance. Deficiencies revealed by early
tests are clues that indicate what knowledge is missing from the initial versions which will need
to be incorporated into later versions.

8



IDENTIFYING/LIMITING THE DOMAIN

The processes of defining the domain and acquiring knowledge are deeply intertwined, but
the knowledge engineer should begin by trying to define the boundaries of the domain, and of
the problems to be solved in the domain. The definitions will be modified as knowledge
accumulates.

IDENTIFYING THE DOMAIN

The product of domain definition should include the following items:

1. A general description of the types of problems the system will be expected to handle.

2. References to written sources and where they exist. .,.

3. An annotated collection of basic concepts, terms, acronyms, and symbols.

4. Identification of experts.

5. Examples of reasoning used in various scenarios.

6. Realistic expectations for system performance.
OII

7. A core system in which all of the components of an operational system are functioning,
but without the breadth or depth of a final system.

8. A catalog of domain entities (objects), relationships among objects, interactions
among objects, and object descriptions, including abstract descriptions and
generalizations over multiple objects and classes of objects. This will express the
domain's ontology.

9. A definition of input formats and sources.

10. Information on how a given specific problem will be expresssed to the system when the
system is used.

11. An initial-state description including "background" knowledge.

12. A fundamental set of reasoning and analysis rules including heuristic rules (rules of
thumb).

13. Strategies (metarules) capable of functioning as part of the control knowledge for the
system.

,.5'
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DOCUMENTING THE KA PROCESS

The KA work may take months or years and involve a large number of people. To prevent
the KA team from working at cross purposes, and to enable new people to understand the
intent and background of the work, it is suggested that documents describe in detail exactly
what is known during different phases of the project (Grover, 1983). The resulting collection of
documents may be used as a common medium for communication and reference, and even as a
partial substitute for the expert(s) during the latter stages of the project.

METHODS OF ACQUIRING KNOWLEDGE

Methods of acquiring knowledge include interviewing, collecting plans, and metaplanning.

INTERVIEWING

Some of the techniques used to obtain knowledge from experts are the following:

* Protocol analysis

0 Goal decomposition

0 Scenario "walk throught

0 Reclassification

* Expert's justification of his or her methods

* Limitations on the range of topics covered

Protocol analysis. Protocol analysis consists of having the expert attempt to solve an actual
problem in a manner with which the expert is familiar, usually in the domain setting. The
interviewer observes this process and interrupts periodically to obtain information on the
expert's reasoning processes. Although these interruptions may be intrusive, they are necessary
to ensure that the interviewer is eliciting rather than inferring the actual reasoning (Simon,
1980).

Goal decomposition. Goal decomposition is a process of reducing a big problem into a
number of smaller ones. The decomposition process can yield insight into the domain and
make it manageable, but this technique cannot be used alone since it will not provide the details
needed for interpreting situations and objects in the domain.

Scenario walk throughs. The scenario walk through is a technique which requires the
expert to verbally reconstruct his problem-solving behavior. Usually a very elementary scenario
is chosen (by the expert) to illustrate the reasoning he uses in solving a problem. The scenario
chosen for the walk through should be:

10



1. Well understood

2. Archetypal

3. Important

4. Minimal (does not incorporate any unnecessary complexities)

5. Expected (experts are not in disagreement over any important aspect) (Grover 1983)

In the process of walking through the scenario, there are apt to be many distractions,
including the appearance of terms and concepts unfamiliar to the interviewer, who must decide
whether to interrupt the process for elaborations on the spot or to make note of gaps to be
filled in later.

Walking through the scenario may be complicated by "rule fanout." The expert is
considering many rules during the reasoning process, and is liable to get bogged down in
explanations of all the aspects of reasoning and either never completes the scenario, or forgets
to mention critical steps which, later, will prevent the system from functioning successfully.

Reclassification. Reclassification attempts to refine the classification of features of the
domain into specific objects and activities. In an object-oriented problem domain, this
approach extracts valuable knowledge of objects and enables the knowledge engineer to fill in
the object hierarchies and describe their inheritance properties.

Expert's justification of his or her knowledge. Requests that the expert try to justify the
knowledge can lead to the additional knowledge needed to build the system. The justifications
start from already identified knowledge. They proceed by examining that knowledge from the
viewpoint of explaining how the expert has confidence that the putative knowledge is correct,
how the knowledge is known, and on what assumptions or principles that knowledge is based.
Justifications may also be sought which will explain why knowing that element of the knowledge
is adequate within its framework to handle the problem at some level. These techniques can
elicit fundamental knowledge that is not consciously associated with any single task because it
applies to so many tasks.

Limitations on the range of topics covered. During the performance of a task, only a small
proportion of an expert's knowledge is applicable at one time. Thus, it makes sense to set up
situations in which the focus is on acquiring selected portions of knowledge during specific
interviews. The expert can often recommend appropriate situations. Once a limited area is
chosen, an attempt can be made to draw out everything relevant to that situation, including
pointers to other topics that need to be explored in subsequent interviews.

Ideally, focus of an interview should be limited to subareas selected during the
decomposition phase.



Recommendations from a domain expert. In Snell (1983), a domain expert recommends
that interviewers keep in mind the following points:

" Do not rush the expert.

" Expect ambiguity.

" Use existing documentation.

" Let the expert do the talking.

* Keep rules as self-evident as possible.

* Avoid talking about performance expectations of the system during the early phases.

INTERACTION BETWEEN KNOWLEDGE ENGINEERS AND EXPERTS

In the Dipmeter Advisor project, knowledge engineers found that the experts sometimes
were "moving targets." An expert was using the process of program construction as a test bed
for his own evolving ideas. This may be an undocumented future use of expert systems for
training and discovery, but it is also an added complication.

Also, experts' reasoning processes were somewhat different depending upon whether the
scenario was picked by themselves or chosen for them (Smith & Baker, 1983). The difference
may have been a natural result of the greater expertise that they were able to muster on the
problems of their choice. This should not be an argument against having the expert choose his
own problems, since it is just this greater expertise which is of primary interest to the knowledge
acquisition team. On the other hand, attempting to solve problems on the edge of his area of
expertise may cause the expert to recall some of the principles that might not otherwise have
been remembered.

COLLECTING PLANS OR PARTIAL PLANS

Collecting and indexing plans or partial plans may make sense for acquiring expertise
which is to be used in systems that will construct or modify analogous plans. Along with
collecting the plans, it will be necessary to identify their salient characteristics and the rules for
generalizing, modifying, or making the analogies.

Plans collected early in the KA process can provide structures to guide in collecting and
refining of data for analogous plans. Extracting the structures could be accomplished auto-
matically in some cases by using KA tools that use inductive methods.

METAPLANNING

Metaplanning is a technique in which operations carried out during plan derivation are
themselves regarded as actions to be planned at a higher level. The operations which are subject
to metaplanning include constraint propagation, top-down elaboration, or backward and

12



forward extension. Knowledge acquirers should watch for signs of any metaplanning that the
experts are doing.

CONFLICT RESOLUTION FOR SYSTEMS DRAWN FROM MULTIPLE EXPERTS

Where substantial conflict is expected from experts in a domain, it is advisable to choose
conflict resolution strategies and set them in place as early as possible. Ideally, these strategies
need to be decided upon before any conflicts actually arise. However, it may not be necessary
to confront experts for a resolution of some kinds of conflict. Some apparent conflicts may be
reflections of the grainsize of the variables. Also, apparent conflicts may be indications that the
items in dispute have little effect on the solution of the problems being examined.

If there is doubt as to which expert is right, and if the system has sufficient modularity,
several versions of the system may be developed and tested. An abstract space which spans
over the apparently conflicting information may be maintained by entering a range of values as
opposed to a single specific value for some concepts or terms. The version space which results
will take advantage of the commonalities of different experts without commitment to areas of
differences. Ultimately, it may be necessary to make the commitment but, in some cases, this
approach will result in abstractions which are not only adequate to produce satisfactory
performance, but also superior in terms of computational power and efficiency.

DECISION ANALYSIS

A formal decision method can be viewed as a closed inferential procedure whose input is
an axiomatic description of a decision process and whose output is a prescribed action.
Decision analysis is a collection of techniques for helping a decision maker develop insight with
respect to his decision. These techniques assist in challenging the conceptual framework in
which a decision problem is initially described, and they can help in reformulating problems so
that they are more readily handled. Human beings are very good at identifying the factors that
are relevant to the problem, but machines are generally unable to accomplish this task by
formal techniques (McCdrthy, 1980). But the situation is reversed when the task is to sort in
order of importance the elements of a list of factors that are relevant to a decision. In tasks
that require rank-ordering relevant factors, formal techniques tend to significantly outperform
common sense. For the purposes of this discussion, a factor is counted as important on the
basis of its ability to change a recommendation for action as its own values change.

Attention-focusing methods from decision analysis can be used as preprocessors to simplify
the construction of complex models. This also makes it easier for nonexperts to comprehend
the decision process, since part of the problem has been decomposed and can be addressed
separately.

The object of modeling in the context of decision analysis is to devise a formal
representation of a real-world decision problem. The analyst obtains a set of variables that are
relevant to the decision problem and specifies the relationships among them (Matheson &
Howard, 1977). The modeling effort produces an explicit value model to determine the relative
desirability of various outcomes under consideration (Howard, 1973; Keeney & Raiffa, 1976).

13
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Once a formal model of the decision problem has been obtained, the planning formalism
infers a strategy (i.e., a plan) for action. The most widely accepted planning paradigm in
decision analysis is to select the strategy that maximizes expected utility (Howard, 1968, 1973;
Keeney & Raiffa, 1976; Matheson & Howard, 1977). However, this paradigm may not be
general enough (March, 1978; Tversky & Kahneman, 1974, 1981; Sacerdoti, 1975).

Although most of the academic research in the field of decision analysis has been devoted
to the development of planning techniques (Howard, 1973; Simon, 1977), newer work is
addressing modeling techniques which are critical for the identification phase of knowledge
acquisition (Holtzman, 1981, 1984).

The suitability of formal decision-making techniques for the evaluation of the importance
of factors in a decision makes these techniques desirable for helping to focus attention on the
appropriate concepts during the formalization and clarification phases of knowledge
acquisition.

MACHINE ,EARNING

Machines with the ability to learn show promise of acquiring expertise in specific domains.
The machine's ability to learn will affect the types and structure of the data gathered for it.

Learning strategies. Learning strategies differ from each other in the type and amount of
inference they must perform to derive the desired knowledge. Some systems perform complex
inferences that occasionally lead to the discovery of new knowledge. The learning strategies
used in expert systems include:

I . Learning from instruction, in which new knowledge is integrated with prior knowledge
for effective retrieval and use. Versions of this strategy of learning are implemented
in, for example, TEIRESIAS and NANOKLAUS.

2. Learning by deductive inference, in which the inference permits the system to
determine important consequences of the knowledge, or to restructure the knowledge
into more useful or effective forms. Automatic theorem provers use this learning
strategy.

3. Learning by analogy, in which existing knowledge is transformed or extended to make
it apply to similar tasks.

4. Learning from examples, in which examples are typically classified by a human teacher
or another system. This inductive learning system forms or modifies decision rules by
generalizing from the examples.

5. Learning by experimentation, in which the system finds examples by search or some0
other active effort. The system then learns from the examples. This method is used in
the LEX symbolic integration learning system.

6. Learning by observation and discovery, in which the system develops theories about
observed or given facts.

14
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INDUCTIVE METHODS

The Knowledge Acquisition (KA) process can be simplified by having the machine use
inductive techniques to learn rules directly from examples of decisions made by human experts.

One of the benefits of using an inductive form of knowledge acquisition is that it relieves
the system builders of the task of formalizing the expert's knowledge.

Computer programs which induce rules from examples of expert decisions are a promising
approach to rule acquisition. In some cases, rules formed by such programs have outperformed
rules written by human experts (Quinlan, 1983; Michalski & Chilausky, 1980b). However, more
foundational work is needed to provide explanation from system generated rules, and the
question of validating these rules is felt to be more difficult (although it is not more difficult in
principle) because the rules are sometimes too complex to be used or understood by humans.
Inductively derived rules are more likely to be comprehensible if the domain or problem is
decomposed ahead of time by the domain expert, but this process is itself very difficult and
some domains may not be easily decomposed. A start on automating the decomposition of
domain knowledge is presented in new work on conceptual clustering (Michalski & Stepp, 1983;
Langley et al., 1986; Fisher & Langley, 1985; Nordhausen, 1986) and in some work on dividing
examples into a hierarchy of subclasses (Paterson, 1983; Fisher, 1986).

Additional research is required to incorporate knowledge into the search for appropriate
generalizations. The combinatorial explosion can best be controlled by using domain
knowledge during the inductive process. Quinlan's ID3 algorithm, for example, uses an
information theoretic measure to select the next attribute in its decision tree (Quinlan, 1979).
Work on GEM, which is to be a part of the ADVISE system for building expert systems, is
progressing in this area. GEM will permit the user to specify background domain knowledge in
a stylized language.

In spite of their current limitations, inductive approaches to knowledge acquisition are the
most promising. The primary benefit of inductive techniques is that the domain expert can
provide what he is best at providing, i.e., tutorial examples and salient features of the domain,

and not be called upon to generate an explicit declaration of his knowledge (Michie, 1982).

NATURAL-LANGUAGE INTERFACES

Many of the existing tools contain facilities for English-like interaction, smart editors, and
the capability of handling multiple representations. Each one of these has advantages.

Natural-language interaction with users and builders provides the benefit that not all the
details of the knowledge representation need to be known and manipulated for additions or
modifications to be made to the system.

Smart editors can keep track of the system construction process and identify gaps, and theyI
ease the entry of information. They can be fitted with a querying facility to relieve the builder
of the system from some of the responsibility of having to know what the system needs to know.
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They can also catch syntactic errors which occur during entry of information, thereby adding to
the assurance that the system is receiving the knowledge it is supposed to receive.

Most of the tools and languages used for expert system construction include ways of mixing
types of representation. This facilitates the construction of hybrid systems that can handle the
complexities of real-world problems.

CLASSIFYING TOOL TYPES

Expert-system development tools and languages simplify and accelerate the representation
and modification of knowledge, but there are no explicit knowledge-acquisition facilities in
them. The principal difference between tools and languages is that the tools usually have a
greater bandwidth for interacting with system developers and more preprogrammed options for
representation and control. Some languages, such as Metalevel Representation System (MRS),
facilitate the specification of metaknowledge and control, and have more flexibility, but also
requ ire more programming to construct the system.

The tools and languages used to build expert systems are media for expressing knowledge,
but they are not tools for collecting. They assist in the building of expert systems primarily by
setting the frameworks for the knowledge to enter. They can be restrictive if there is a
mismatch between the built-in inference modes or the forms of representation and the problem
solving structures and knowledge from the application domain.

CLASSIFYING TOOLS BY THEIR FUNCTION

KA tools can be classified several ways. The following paragraphs discuss many of the
functions performed by KA tools. The possible applications of tools in these categories to the
ASPA program are given in Box 1, and a list of tools that perform one or more of these
functions is given in table 1.
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BOX 1. APPLICATION OF TOOL CATEGORIES TO ASPA

DISCOVERY

Most current discovery tools require a base of fully analyzed cases. In ASPA, the only
cases available are those in the Joint Munitions Effectiveness Manual (JMEM). None of the
existing tools are directly applicable without some adjustment.

IDENTIFICATION

Identification tools would be useful for analytic subdomains in ASPA. The Expertise ,,
Transfer System (ETS) is not yet available and the Goal Directed Decision Structuring System
(GODDESS) would need to be reimplemented. ROGET and MORE could be used to classify
situations using intermediate features.

SELECTION OF REPRESENTATIONS

Selection tools do not exist yet, except possibly for some newly developed capabilities in
Lenat's Representation Language Language (RLL). ROGET was to have been built to handle
selection. However, it has only been expanded in the sense that a query is made to the
knowledge engineer to ask what kind of system he feels is most like the one under construction.
The only permissible answer to the query at this point is MYCIN.

TRANSFER

Transfer tools are numerous, but all are specialized for particular knowledge
representations. Knowledge Base Interactive Classifier (KuBIC), which can construct Lisp
Object Oriented Programming System (LOOPS) hierarchies, is unsupported and unavailable;
its descendant, KLASSIC, may be available in source listing form.

VALIDATION

The System for Experimentation with Expert Knowledge (SEEK) requires a data base of
cases; ONCOCIN and TEIRESIAS are parts of other applications; UNITS, CHECK, SEEK,
and ATEST are incorporated into separate expert system building tools and environments
which would require major effort to interface with ASPA. I
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Table 1. Principal uses of tools.

Principal uses

Tool Disc Ident Select Trans Val Note

ADVISE X X X X a
ACLS X X X
AQ11 X X
ATEST X

BACON X
CHECK X X
CLUSTER/2 X
COBWEB X

DUCK X X
ETS X X X X a
EXPERT-EASE X X X
GEM X

GODDESS X a
ID3 X
KAS X X
KLASSIC X
KuBIC X a

METADENDRAL X
MORE X X X a
NANOKLAUS X a
ONCOCIN X a

RLL X X X
ROGET X X a
RUMMAGE X
SALT X X

SEEK X X a
STAGGER X
TEIRESIAS X X X a
UNITS X X

a See description in this report.

Legend.
Disc - discover knowledge
Ident = identify knowledge
Select = select knowledge representations
Trans = transfer knowledge
Val = validate knowledge
X = used
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Discovery. Theoretically, many kinds of knowledge could be discovered by machine. In
practice, very little of it is.

Present and future uses of discovery tools are listed below:

Present uses of discovery tools Future uses of discovery tools p

" Reveal hidden relationships 0 Find new features

* Find new concepts by regrouping * Find new representations
information

* Find new concepts
* Learn from observations

0 Find new techniques for solving problems
• Predict the effects of actions

" Represent knowledge efficiently

" Reduce the difficulty of handling
large volumes of information

The METADENDRAL, CLUSTER/2, COBWEB, BACON, and GEM systems are
examples of discovery tools.

Identification. The usual approach to knowledge acquisition begins with this function. The
knowledge in question has been discovered, and is in use by the experts. Even if knowledge of a
domain is readily available in this sense, determining what knowledge to use in the system can
be very difficult. It might be expected that the experts will know what is important, but in
practice they do not. They may know how to use their own knowledge, but they frequently do
not know how to point to or characterize the knowledge they are using.

The ETS system is an example of a tool which contributes to the identification of
knowledge.

Selection of representations. Tools for choosing representational formalisms do not yet
exist. Knowledge engineers handcraft representations or select representation languages which
they believe will be capable of organizing the knowledge for use in solving domain problems.
Matching the kind of knowledge to the type of representation is an art. Some knowledge
engineers, such as Greiner and Lenat, 1980, are attempting to codify their own knowledge and
build tools capable of selecting a representation.

Transfer. Transfer tools make up the bulk of knowledge acquisition tools. They ease the
process of moving preidentified knowledge into preselected representations by the following:

0 Assisting in finding the appropriate place

a Catching misspellings
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* Supplying defaults

* Doing type checking

* Catching syntax errors

* Maintaining consistent terminology

* Determining that incoming values are not out of range

* Assuring the consistent treatment of values

* Maintaining consistency between multiple copies of the same information which must
reside in more than one place for the system to run with maximum efficiency F

" Reminding system builders about the characteristics of the structure which is being
filled out

• Signaling unusual forms

* Reporting back on the state of the transfer process

Validation. Validation tools find errors. Some tools check incrementally with each
addition to the system, some work only when processing a complete prototype so that dynamic
checks can occur while the system is running. The tools may be static or dynamic, incremental
or all-at-once, feedback driven, or stand-alone. There are tools which check for consistency,
completeness, redundancy, unused or unusable knowledge, unusual forms, and interactions
among rules or heuristics. Some validation tools propose and perform experiments (e.g.,
SEEK2) to exercise the system. These tools attempt to determine that the knowledge in the
system will function correctly and as expected.

CLASSIFYING TOOLS BY THE TYPES OF KNOWLEDGE USED
TO ACQUIRE KNOWLEDGE

The knowledge used by a KA tool to acquire knowledge is ordinarily quite different from
the knowledge it is designed to acquire. Thus, each knowledge acquisition tool can be classified
by the kind of knowledge it uses as well as by the knowledge it acquires. The knowledge
required by the tool may be quite extensive. Some of the most recently implemented tools,ROGET and MORE, draw upon knowledge of diagnostic problem solving, for example. The
knowledge used in the tool guides subsequent acquisition of knowledge. Table 2 lists several
categories of knowledge and the systems, shells, and languages using them.
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Table 2. Types of knowledge used by existing shells and systems.

Type of Knowledge Shell or System

Constructive Problem Solving and Debugging Techniques SALT

Decision Analysis GODDESS

Decision Tree Structuring ACSL

Diagnostic Problem Solving ROGET

Diagnostic Problem Solving and Casual Relations Model MORE

Frame Representations and Documentation Procedures UNITS

Hierarchical Structuring and Inheritance KuBIC, NANOKLAUS

Hierarchical Structuring and Programming Techniques RLL

Induction and Collections of Analyzed Cases GEM, AQI 1, ESEL

Induction, Chemistry, and Generate and Test Problem Solving METADENDRAL

Induction and Medical Domain Metaknowledge from a TEIRESIAS
Partially Constructed System

Induction, Collections of Cases, and Metaknowledge about SEEK, ONCOCIN.
Production-Rule Structure Knowledge-Base Refinement ATEST

Personal Construct Psychology and Repertory Grid Technology ETS

Semantic Network Structuring KAS
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The distinction between the knowledge used by the tool and the knowledge it acquires may
be confusing because, at first glance, it seems logical that the first chunk of knowledge it
acquired would form a base from which to obtain more. However, the current state of the art
does not permit this in any general way. Only a few KA tools have even rudimentary
capabilities of applying knowledge which they have acquired, and that knowledge is only a
minute subset of what is acquired. In TEIRESIAS, for example, the structure of rules is
acquired by a completely separate mechanism from the content of rules. The structure of rules
is then applied by the system to improve the acquisition of the contents of rules. For a system
built out of knowledge of diagnostic problem solving to improve itself analogously, it would
have to be a learning program which discovers improved diagnostic problem solving models. A
system built out of inductive methods would analogously need to learn new inductive
techniques! It would be learning to learn. It is questionable to what extent even humans learn
to learn.

The sense in which a KA tool uses the knowledge it acquires to obtain more is exemplified
by a system which uses knowledge as it is acquired to fill in holes in a preselected structure;
thereby detecting that only so much of the structure is still left to be filled in. The acquired
knowledge is used just to assess the state of the knowledge acquisition process. More advanced
tools may use the acquired knowledge to simulate the functioning of the partially constructed
system to obtain feedback on its shortcomings for directing later efforts of acquiring knowledge.
Again, the knowledge is functioning in a circumscribed way to build a performance
subcomponent of the KA system.

Most older tools draw upon metaknowledge of the knowledge the tool was built to obtain.
The PROSPECTOR Knowledge Acquisition System (KAS) is an example.

Once the metaknowledge is identified, a system to acquire domain knowledge can be built.

There are a variety of problem-solving paradigms, including the following:

• Diagnostic problem solving

• Analogical problem solving

* Constraint-satisfaction-problem solving

* Means-ends analysis

* Inductive-scientific-problem solving

* Debugging approaches (related to genetic algorithms and to the cycle of generating
and testing candidate solutions or solution steps)

Some tools, even though domain-dependent, may still contain basic assumptions that are
applicable to several domains. Once these assumptions are identified for one of the domains,
they can be built into a knowledge acquisition system to collect information automatically in
many of the others.
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ADDITIONAL DIMENSIONS FOR CLASSIFYING TOOLS

In addition to classifications based on function and the kinds of knowledge needed, tools
may be classified by a number of miscellaneous characteristics,

* The stage of knowledge acquisition to which the tool contributes.

* The kinds of knowledge it is capable of acquiring.

* The style of its user interface.

* The kind of user it is oriented toward, domain specialist or knowledge engineer.

* The type of knowledge already incorporated so that it functions to acquire the right
knowledge.

* The knowledge acquisition goals that it satisfies.

* Who is replaced by it.

* The functions it performs.

* Practical considerations such as its availability, its developer; where, when, and if it is
supported, what it's written in, what it runs on, and contacts.

* Whether it is static or dynamic, that is whether it operates while the system executes,
or whether it only processes static structures and representations a

" The kinds of knowledge representation schemes it uses.

* Whether or not the design goals are realistic.

* Whether or not the costs of building the tool outweigh the benefits of having and using
it.

* Whether or not the knowledge that forms the basis of the tool is subject to change and
is it grounded in methods (either domain specific or general) which will soon be
outdated.

" Whether or not the tool allows for maintenance of the knowledge it will collect, or setsI
the collected information in concrete.

* Whether or not it can handle knowledge which is evolving and/or time-dependent.

" Whether or not it can collect adequate information to provide explanations for the
knowledge it obtains.
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* Whether or not it permits the identification of some knowledge as being uncertain.

* Whether or not it protects against clerical errors in entering information.

* Whether or not the human interface is natural and provides for a variety of
representations.

ADVISE

At the University of Illinois, researchers are constructing an integrated knowledge
acquisition and refinement system. The product of the effort, ADVISE, is a domain-
independent general purpose inference system which can be taught in several different ways.

ADVISE does not restrict the user to a single knowledge representation and inference
mechanism. This is in contrast to EMYCIN, for example, which allows only rule-based
knowledge and a backward chaining control scheme. ADVISE employs three knowledge
representations: a rule base, a conceptual network, and a relational data base.

Unlike typical rule bases, the rule base for ADVISE may be structured. Each node in the
rule base structure may have contextual information associated with it, so rule groups provide
another level of "knowledge chunking." The contextual information may include different rule
evaluation settings which are accessed by the rule evaluator, and could also include
TEIRESIAS-like rule models.

ADVISE includes many different modules for inference mechanisms. The inference
mechanism language allows the user to define his control scheme in terms of already existing
tools.

ADVISE has been used to develop three expert systems; PLANT/ds for diagnosing
soybean diseases, PLANT/cd for predicting autumn damage to corn, and BABY for advising on
neonatal intensive care.

ETS

The Expertise Transfer System (ETS) (Boose, 1984) uses interviewing methods from
Kelly's (1955) Personal Construct Theory. Kelly was interested in helping people to categorize
their experiences and classify their environment in a psychotherapeutic setting. The organizing
principles result in structures that allow people to predict events more accurately and act more
effectively, and a framework in which to reorganize knowledge to satisfy specific goals or needs
(Shaw, 1981).

Kelly's theory is that each 1),'rson tries to predict and control events by forming theories,
testing hypotheses, and weighing experimental evidence. Among the techniques Kelly
developed is the Repertory Grid Test for eliciting, listing, comparing, and rating role models.

Additional techniques for analyzing repertory grids have been developed, including an
interviewing technique known as laddering, that connect a given concept to its subordinate
concepts and superordinate concepts.
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El'S automatically interviews the expert to obtain elements of the domain that need to be
classified. By selecting triads of elements, a variety of traits are elicited by asking what
distinguishes two of the members of the triad from the third. Laddering is used, as are several
other methods, to help the expert expand on and verify the relationships between concepts.
Subsequently, the system requests that the expert rate each element against each construct to
create the rating grid.

The constructs are analyzed to determine which are nearly functionally equivalent, and to
generate an entailment graph of implication relationships. The expert can then study the
unexpected relationships revealed in the graph; and, with the help of the system, track down the
original rating responses that were responsible for their appearance. Once the entailment arcs
are corrected and accepted, the system again invokes the laddering method to try to refine any
ambiguous construct relations into parallel or orthogonal forms.

These automated techniques avoid many of the inconsistencies and inaccuracies that arise
from unstructured knowledge acquisition methods.

ETS generates production rules based on the expert's assessment of each construct's
potential importance in solving problems in the domain.

The production rules are automatically assigned certainty factors. The expert must review
these to be assured that they correspond with the relative strength of belief that he would
associate with the rule. ETh generates thie certainty factors by taking into account grid ratings,
relative construct importance, and the certainty factor combination in either OPS-5 or KS-300,
the two target languages for which ETS generates knowledge bases.

In addition to the basic rules derived from the rating grid, which are described as
conclusion rules, ETS also generates intermediate rules based on the relations in the entailment
graph. For each entailment, one rule is generated and a certainty factor based on the strength
of the entailment is associated with it.

As a knowledge acquisition tool, ET'S's strengths are in the feedback it provides to the
expert and in its ability to detect and resolve ambiguities by interaction with the expert.
Another benefit of ETS is the assistance it provides in the initial analysis of domain concepts;
the expert is not entirely on his own.

While ET'S could not be used to generate rules directly for ASPA, it could be used to elicit
the initial traits and heuristics for some subareas of the ASPA domain. ETS is suited to
analytic problems rather than synthesis-class problems. Its developers say that it does not
readily handle combination problems which require both analysis and synthesis either, so it
cannot be expected to obtain all the knowledge needed in ASPA. Nonetheless, ET'S could be
used for analytic subdomains which are found to be fairly independent during the decomposi-
tion of ASPA. Portions of ASPA involve synthesizing the results of several analytic components
and ET'S can be applied separately to the analytic components.
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GODDESS

The Goal Directed Decision Structuring System, GODDESS, is an interactive tool that
aids an expert in structuring and organizing his knowledge about a particular problem. By
emulating a decision analyst, GODDESS elicits a goal-directed network of relationships from
the decision maker.

GODDESS uses a structured English dialogue to construct a network that reserves
structures for both actions and goals (including subgoals) or issues. Each action is characterized
by two lists, a list of preconditions and a list of effects. The intent of each action is identified
before the action is entered into the system, thus encouraging the user to discover novel
alternatives. The expert is queried to obtain value judgements about the suggested subgoals so
that future queries may be directed to the most important aspects of the domain. The value
judgements can also contribute to evaluating the relative merits of different solution paths.

GODDESS is intended for use where manual interviewing would be either infeasible or
uneconomical. It is geared toward the acquisition of the knowledge required for synthesizing
plans. Since GODDESS is domain independent, its contributions to KA are primarily in the
phases of identification and formalization. The domain knowledge is entered by the user for
each separate specific problem solving situation so we would need to build a structure around
this process to capture and integrate knowledge from several episodes of its use.

KuBIC

The Knowledge Base Interactive Classifier [KuBIC] (Finin and Silverman, 1984) is an
interactive system that creates a hierarchical frame-structured knowledge base. It classifies
concepts by asking questions that help to make the classification. If the expert provides enough
information, KuBIC will simply classify the concept without any questions. So a user who is
familiar with the knowledge base can use the system just as a classifier, while others may use
the interaction to be presented with just those parts of the knowledge base which are relevant to
the classification of the new concept.

The classifying process is divided into three phases:

I . Obtaining the initial description of the concept.

2. Finding the appropriate parent concept in the existing taxonomy.

3. Finding the appropriate immediate subconcepts in the existing taxonomy (which may
be null).

Given a partially complete knowledge base, KuBIC asks questions to determine the most
specific and most general subsumption relations between the new node and those already in the
knowledge base.

The algorithm for KuBIC could he applied to knowledge representation systems or
environments that contain classifiable knowledge bases such as LOOPS (Bobrow & Stefik,
1983), HPRL (La nam et al., 1984), and KEE (Kehler & Clemenson, 1984). However, the
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algorithm is currently applicable only to structures in which there is no procedural attachment.

There is a descendent of KuBIC, with more "bells and whistles," called KLASSIC.

MORE

MORE (Kahn, Nowlan, & McDermott, 1984) and ROGET are tools based on a generic
theory of diagnostic systems. MORE incorporates domain knowledge as it is obtained and uses
this knowledge to detect inconsistencies or problems with the weights associated with rules. It
starts with a model of domain relations, the structural relations within the domain. These
include five types of entities:

* Hypotheses
* Symptoms
* Conditions
* Links
* Paths

NANOKLAUS

The Knowledge Learning and Using Systems (KLAUS) (Haas & Hendrix, 1983) use
natural language dialogue to elicit a classification hierarchy from an expert. The expert must
already have in mind the outline of the hierarchy for the acquisition to be successful.

The information that is acquired is that needed to support question- answering or fact-
retrieval tasks that can be supplemented by the application of conventional software packages
such as report generators, simulators, database management systems, and statistical packages.

The unique feature of the KLAUS systems are their capacity to simultaneously learn both
the new domain concepts and the linguistic constructs used to express them. This form of
knowledge acquisition also differs from acquiring knowledge for insertion into rule-based
representations in that it is primarily the acquisition of facts.

The first pilot implementation of the KLAUS system, NANOKLAUS, prompts the user for
the information it requires to assimilate new concepts.

ONCOCIN

The ONCOCIN system (Shortliffe et al., 1977) includes a tool which helps the expert
identify problem areas in the knowledge base (Suwa, Scott & Shortliffe, 1982). Unlike the
TEIRESIAS system, in which errors in the knowledge base are tracked down during problem-
solving, the ONCOCIN system incorporates a tool which formally assesses the rules as they are
initially entered into the knowledge base. This approach has the virtue of not being so
dependent on chance to expose problems.

However, ONCOCIN's knowledge acquisition tool works only in the context of i single
expert system, and requires that the knowledge base be already partially developed. It folloN
the usual technique for developing a knowledge base of generating one and testing its adcquaLet

by use of fully analyzed examples. If any problems are exposed by the svstemn's hndling o1 the
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examples, the knowledge base is modified. The system is then tested again and the cycle of
generating and testing is repeated until the expert is satisfied with the system's performance,

In rule representations, conflict between rules can be recognized when two rules succeed in
the same situation, but with conflicting results. Redundancy can be detected when two rules
succeeding in the same situation have the same results or differ only in that one contains
additional restrictions on the situations in which it succeeds. Incompleteness or gaps can be
detected when a situation not covered by the antecedent of any rule requires some action or
result. If it is possible to enumerate all of the situations for which a given result should ensue,
then missing rules can be detected logically.

One way to generate a list of all the situations is to designate a special set of domain
variables. Taking the values of these variables in every combination will define all possible
situations.

ONCOCIN uses a technique for partitioning the knowledge base to obtain subsets of the
original collection of rules. Since the partitions are based on which variable subsets appear in
the rules, these can be checked independently for conflict, redundancy, subsumption, or missing
rules.

ROGET

ROGET (Bennett, 1984), like MORE, is a tool to acquire the initial vocabulary and
conceptual structure of a diagnostic problem solving domain. ROGET is guided by knowledge
which knowledge engineers can provide about diagnostic problem solving in general, but it does
not rely on domain-specific knowledge. Among the general categories of diagnostic tasks that it
queries the user for are

* Determining problems
• Determining causes
* Recommending actions
* Determining additional tests
" Predicting observations
* Evaluating evidence

SEEK

A System for Empirical Experimentation with Expert Knowledge (SEEK) (Kulikowski,
NQ83) constructs, tests, and debugs a large collection of expert rules, and assists in rapidly
updating and improving the performance of expert systems. It was developed in the context of
a medical-diagnosis expert system, but applies more generally to classification problems, that is
those problems which can he expressed as prespecified lists of conclusions and observations.
SEEK is integrated into the general purpose system building tool EXPERT (Weiss &
Kulikowski. 1979).

SEEK prompts the expert-system builder to enter descriptions of reasoning rules in the
torm of a table where conclusions, confidence levels, and necessar, and cxclusionar,
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requirements (along with some medical terminology) can be expressed; and automatically
converts the tabular results into EXPERT rules.

If disagreements between the expert's conclusions and those of the expert system are
detected by SEEK, it suggests experiments for resolving the disagreements. The suggestions
take the form of alterations in the scopes of rules or groups of rules. SEEK employs various
heuristics to prioritize the different specializations and generalizations of the rules based on
expected improvements in performance. The system designer rates the experiments and makes
the final choice of which experiments to run.

In SEEK, a database of problem-solving examples with independently validated
conclusions are used to evaluate the results of experiments performed on the rules in the
system. By perturbing the rules and assessing the number and type of resulting errors on the
stored cases, it is able to suggest possible improvements. Using work by Politakis (Politakis and
Weiss, 1982 and 1983) on statistical credit assignment it gathers statistics on the "missing
components" that prevent rules from firing when they should.

During incremental development of an expert system, SEEK can be run repeatedly to
verify that new knowledge is not adversely affecting the functioning of the original system and,
if rule interactions do alter the model's conclusions so that they are at variance with the
expert's, it makes suggestions for correcting the conflicts.

A new version of SEEK, SEEK2 (Ginsberg et al., 1985), extends SEEK's applicability to a
more general class of knowledge bases. In addition, SEEK2 can function independently if
knowledge base refinement is desired without human interaction.

TEIRESIAS

The TEIRESIAS system (Davis, 1976) provides an interactive, English-language front end
to the MYCIN rule base. TEIRESIAS contains rule models which express metalevel knowledge
about the forms of diagnostic and therapeutic rules. These models are used to generate
expectations about the form and content of rules to be elicited from the experts which are then
used to guide the debugging process.

TEIRESIAS is a domain-independent knowledge acquisition system for a fixed control
structure and representation. Only the knowledge base can be changed, the system cannot alter
the representation or the control. TEIRESIAS works to improve the content of the knowledge
base, so the creation of the program has to be at a fairly advanced stage before it can be applied
to the task of knowledge acquisition. Alternate applications of the tool are limited to systems
which have the same identical control structure and the same representations.

Although the problem solving paradigm for ASPA does not match that for TEI RESIAS, it
should be noted that analogous systems could be constructed for domains that contain ASPA-
like representations and contro; structures. Constructing such a system would be a mammoth
task and there is no guarantee that the techniques in TEIRESIAS will generalize and extend
adequately to the different kinds of tasks found in ASPA.
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AN IDEAL TOOL FOR KNOWLEDGE ACQUISITION

The ideal KA tool would include features to provide the following:

1. Aid in formulating, codifyring, expressing, and modifying domain knowledge for
insertion into knowledge-based systems.

2. Help in verifying that the knowledge is correct, consistent, and coherent, and help in
detecting inconsistent usage of technical vocabulary.

3. Facilities to extract information to be used in explanations at a variety of levels.

4. Ability to obtain deep knowledge, compiled knowledge, heuristics and still-fluid
experimental knowledge and label the knowledge collected with the appropriate
circumstances, reliability, and instructions for its use.

5. Information extraction from multiple knowledge-sources such as textbooks and
databases.

6. A natural interface for the expert or others who need to enter knowledge. During the
earliest stages of knowledge acquisition it will know what questions to ask to maximize
its performance.

7. Automation of the process of acquiring knowledge wherever possible.

8. Mechanisms for accepting advice and for converting that advice into useable
representations in the knowledge based system to enhance the system's performance.

9. A method of obtaining knowledge about the limitations of the domain knowledge so
that an expert system built by the KA tool could experience a graceful degradation of
its functions at the periphery of its knowledge.

10. Automation of the choice of representations for the incoming information, or at least
provide criteria for determining what representations are appropriate.

11. Links or other features to help bring the right knowledge to bear at the right time in

the final system.

12. A querying method for missing information and gap detection in the knowledge
already acquired. Such a tool would need to make use of knowledge in the domain as
it is acquired, and the process of KA itself would improve as its knowledge base grew.
However, the tool should not have to have substantial knowledge of the domain to
begin the process of acquiring knowledge there.

13. Maintenance support of systems even if the domain were still evolving. Domain
changes include changes in theories, changes in level of expertise, changes in the
boundaries, changes in technology, the addition of new equipment. tests, devices,
techniques, paradigms, scenarios, or new observations.
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14. Removal procedures of acquired knowledge when, for example, that knowledge could
not be validated. This would enable the knowledge to be extracted easily and cleanly
without undue loose ends.

The ideal KA system should also be the following:

1. Understandable and able to make the knowledge in it understandable as well.

2. Acceptable to both the users and builders of expert systems, and its strengths and
weaknesses should be known so that it can be used appropriately. Because knowledge
which goes beyond the data is in principle not justifiable, the users and builders of
knowledge bases will continue to be responsible for their validation.

3. Able to facilitate the inspection and evaluation of the knowledge it acquires.
However, it could not be expected to take on the role of justifying the knowledge.

4. Able to make good use of domain experts, allowing them to do what they are best at,
and refraining from requiring them to step out of their customary roles and into the
roles of philosopher or analyst.

5. Nonconstrained in its ability to accept varied presentation of concepts and methods
for modifying knowledge. Domain experts would be given the opportunity to present
their knowledge in a variety of forms since constraints of expression might lead to the
suppression of valuable components of the knowledge that do not fit the preconceived
model of knowledge in the domain.

PROMISING IDEAS

TWO METHODS OF GATHERING AND STRUCTURING KNOWLEDGE

Plan schemas. A relatively straightforward way of gathering and structuring knowledge for
ASPA would be to collect plan schemas along with rules for selecting them and filling in their
details (instantiating them). The initial steps would be to construct plan schemas to build into
the domain model. Subsequently, the procedures for selecting the right plan schema to
elaborate for a specific problem would need to be elicited from domain specialists.

Schemas of derivations. A more powerful, but more complex, way of gathering and
structuring knowledge for ASPA would be to obtain schematic derivations of plans. If the
process of developing plans could be broken into a small, finite set of abstract derivational
forms, knowledge about the domain could be used to select the appropriate schemas. Situation-
specific information could be used to generate the appropriate derivation and produce the
appropriate plan.
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DERIVATION OF ENTAILMENTS AND PRODUCTION RULES

The philosopher David Hume (1739 and 1748) said causal connections are nothing but
constant conjunctions of matters of fact. We should consider how deep we can go in obtaining
knowledge by observing regularities in the matters of fact that are available to us.

Consider an example of a matrix of three cases (C I, C2, and C3) and two dichotomous
variables (low-altitude delivery? and laydown delivery? where 1 = yes and 0 = no) expressing
traits.

CASES Cl C2 C3
Low? 1 0 0
Laydown? 1 0 1

In the first case, a delivery was both a low-altitude delivery and a laydown delivery, in the
second case it was neither, and in the third it was a laydown delivery but not a low delivery.
Since there are eight possible entailments between two trait pairs, we can systematically
examine each possible relation and generate all possible rules which have not been eliminated
by counterexamples.

A rule which would be generated by this tiny set of cases is "All low deliveries are (or
should be?) laydown deliveries." (Because the traits are negations of each other, the other rule
which is generated in this example is just the contrapositive of this one.)

In essence, this approach is an attempt to generalize from examples to generate rules of
thumb, some of which may be ridiculous to the expert. The experts can react to these rules by
coming up with additional missing examples to fill in a more comprehensive picture of the
domain, or by qualifying the rule by indicating the more restrictive contexts in which the rule
could function properly.

Another way to view the information gleaned by this process is as a collection of possible
constraints which are to be validated by the experts before further processing can shape them
into strategies for problem solving.

Variables which could appear in the cases include dichotomous pairs like "good for -. /not
good for _" or "useable for _/not useable for '," where the blanks are filled in with
something like "night deliveries," or "vertical targets," or "surprise."

Each value of a nominal variable may be made into a separate two-valued variable to enter
into the matrix. For example, the concept of weapon may be broken into the concepts of each
particular weapon, so that there will be separate variables for "is or is not a MK82," "is or is not
an APAM," etc., each of which is a dichotomy. Even variables with continuous values may be
converted to some set of dichotomies for the purpose of this kind of analysis. For example, the
variable "altitude" which ostensibly takes thousands of possible values could be broken into say
three variables "low or not low altitude," "middle or not middle altitude," and "high or not high
altitude."
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CONSTRAINT SATISFACTION PROBLEMS

Planning problems may be interpreted as constraint satisfaction problems consisting of a
finite set of variables, each of which has an associated finite set of possible values. A set of
constraint relations identifies which of the values are mutually compatible for certain subsets of
the variables. A solution to the planning problem is just an assignment of values to the
variables which simultaneously satisfies all the problem constraints.

Note that not all variables are discrete, and other techniques may be appropriate for
handling continuous variables which appear in constraint satisfaction problem-solving
situations. It will suffice to create categories of values to restructure a continuous variable as a
discrete one, but optimization methods are also ava ilable and, are referred to in Appendix C,
which briefly introduces the Karmarkar and Simplex algorithms.

During the planning stage, decisions are made about the values to assign to !he variables.
Each choice of a value may have effects on later decisions because of the narrowing of options
as the planning process unfolds. The propagation of constraints must be passed to other parts
of the planning process to reflect the limited options, and there must be a way to backtrack
from ill-advised decisions during the early stages of planning when those selections of values
preclude a solution.

One advantage of representing planning problems as constraint satisfaction problems is
that some of the recent theoretical results on ordering the instantiations can be applied to
recommend optimal approaches to the planning problems; ones which involve the least
backtracking, ones which take advantage of the relative importance of different variables in
meeting the constraints on the problem.

If the construction of solution plans can be made sufficiently simple, further efforts can be
directed toward evaluating multiple plans, aUl of which satisfy the constraints on the problem, to
select the best one on the basis of additional criteria.

Experts include as part of their expertise not just ways of handling complex choices, but
also an ability to produce high-quality solutions over and above that required by the objective
constraints on the solution. Heuristics obtained from experts should be clearly marked to
indicate whether they pertain to achieving an acceptable solution, or whether they pertain to
obtaining exceptionally good solutions.

USING DECOMPOSITION

In a domain which has been decomposed or structured by some process, the initial stages
of knowledge acquisition can concentrate on subareas of the decomposition, and the most
important information to acquire at an early stage will be that which identifies a situation as
belonging to a particular place within the hierarchy or subarea. This will iiamnediately constrain
the search for solutions to a simpler, less voluminous collection of knowledge. The process of
knowledge acquisition in such domains will be best oriented to devise methods to quickly

differentiate subareas.
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Different tasks can be isolated from separate stages in the planning process, and unique
problem-solving methods may be applied depending on the type of task involved. Evidential
reasoning is most appropriate for diagnostic tasks, causal deductive reasoning from axioms or
first principles is most appropriate for consequence-finding tasks (sometimes called What-Wil-l-
Happen-If or WWHI tasks), and object-oriented programming hierarchical structures are most ~
appropriate for data retrieval tasks which involve the inheritance or inference of values from
data values in other concepts. The knowledge acquisition techniques most appropriate for
these kinds of tasks also differ.

USING METARULES TO PARTITION A DOMAIN

Metarules can be generated automatically to partition a domain into manageable
segments. The function of these metarules would be to focus attention to that segment of the
knowledge base having rules with premises capable of evaluating the "true" given the current
facts. If a particular conjunct appears in many different rule premises, evaluating this conjunct
first and ordering the rules on the basis of this conjunct could improve the efficiency of
traversing the rule space. Metarules generated to effect this ordering could take the form of
ruling in a collection of rules or of ruling out some collection of rules, or both.

The value of adding a particular metarule to the rule collection can be calculated by
examining the cost of evaluating that rule (a function of the number of conjuncts in its premise)
with respect to the product of the chance of the premise being evaluated to true and the
amount of pruning of the space of rules accomplished by the metarule.

VALIDATING KNOWLEDGE THROUGH FEEDBACK

Validating knowledge is a process of establishing that we agree with the knowledge; that it
is placed where we want it to be, and is going to be used as we intended it to be. However, if we
want to be assured that the expert's knowledge is what is represented in the system, there is no
substitute for providing feedback directly to the expert. The feedback should not be a mere
parroting of the expert's original input. It should reflect the intended use of the knowledge, the
inferred interrelationships among elements of knowledge, and the control mechanisms forI
problem solving. Feedback can assist in correcting at least some cases where knowledge is
erroneous, extraneous, inconsistent, or incomplete. 4

ALLOWING KNOWLEIDGE ACQUISITION TO BE GUIDED) BY ANALOGY

Where a given paradigm describes a range of problem-solving behaviors, a useful approach
to acquiring detailed knowledge would be to probe for deviations from a simple representation
of that paradigm. Automating knowledge acquisition for domains with this kind of knowledge
might benefit from techniques being devised in current work on analogy in problem solving

SEPARATING KNOWLED)GE AS IT IS ACQUIIRED)

Planning requires

1. Implementation methods for generating possible plans.
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2. Control knowledge for guiding the search for satisfactory plans.

3. Causal knowledge for propagating constraints among subparts of the completed plan.

Knowledge acquisition techniques for ASPA should keep these separate so that possible
plans can be identified on the basis of local considerations, leaving the identification of wise or
optimal plans to global strategies at a different level.

USING HIGH-LEVEL KNOWLEDGE TO FACILITATE PLANNING

A taxonomy of partial plans can be used to limit search in the development of plans.
Knowledge of features or behaviors common to all members of a class of partial plans provides
constraints that can be introduced early in the hierarchical planning process. It is important to
distinguish the specifications (what must be true) of the plan, from the known characteristics of
the model consisting of the partially implemented plan (what is known to be true) since the
latter provides constraints which must be propagated, while the former consists of the goals of
the planning process.

CONCLUSIONS

* BOTITLENECKS

Knowledge-acquisition has been described as the chief bottleneck in the development of
expert systems. The aspects of knowledge acquisition that currently present the greatest

* difficulty are identification, representation, and validation.

IDENTIFICATION

The knowledge acquisition "bottleneck" resides in the knowledge identification phase of
knowledge acquisition. Since identification of important knowledge requires a relevantly high
level of understanding of the domain, knowledge engineers have had to acquire much of the
expertise in a domain personally before they could incorporate it into an expert system.

REPRESENTATION

The matching of knowledge to its representation is not presently a good candidate for
* automation except insofar as the representation can be preselected for automatic entry of
* knowledge for a given subdomain.

VALIDATION

Knowledge validation is a pressing problem which is likely to get worse as inductive
techniques proliferate to relieve the knowledge- identification bottleneck.
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RECOMMENDATIONS

LONG TERM

For the long term, aspects of the problem of knowledge acquisition should be isolated and
studied by means of small experiments from which general principles can be drawn. Combining
the resulting general principles will enable us to ultimately construct robust systems that
approach the ideal KA system described in an earlier section.

NEAR TERM

In the near term, ASPA can benefit most immediately by finding or developing techniques

for knowledge identification, discovery, and validation.

The limited availability of most of the tools discussed in this report, and the mismatch
between their original applications and ASPA, make it impractical to import them for use here.
However, many of the insights that they contain can be used for knowledge acquisition in
ASPA. Local reimplementation of some of the best ideas (notably those in ETS, GODDESS,
and ONCOCIN) can allow us to tune the techniques to the exact needs of ASPA.

RECOGNIZING KNOWLEDGE TO SERVE AS A FOUNDATION FOR KA

Knowledge acquisition should itself be knowledge-based. The only knowledge that is
available before any domain knowledge is collected is metaknowledge, e.g., knowledge of
human psychology, of problem solving techniques, etc. As domain knowledge is acquired,
additional metaknowledge will become available either through human inspection or by
inductive analysis. Knowledge acquisition could then proceed at an accelerated pace.

USING ETS FOR IDENTIFICATION AND DISCOVERY

For assistance in knowledge identification and discovery, some of ETS's basic capabilities
should be reimplemented. This may be unnecessary if ETS becomes available soon. The
benefits of using ETS for obtaining knowledge in analytic subdomains of ASPA could be
substantial.

CONSTRAINT RELATIONSHIPS

A technique for deriving constraint relationships between variable values should be
implemented. Constraint graphs could be built using basic inductive techniques and data from
domain specialists or sources such as JMEM.

BUILDING A TOOL FOR PLAN CONSTRUCTION

To address the synthetic side of ASPA plan construction, a tool should be developed to

process information in constraint graphs. The tool would suggest optimal orderings for making
decisions in constructing plans. Development of this tool would draw from recent work at
UCLA by Rina Dcchter and Judea Pearl on converting some constraint graphs to trees. The
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suggested orderings for making decisions can be inspected by experts, thereby generating
further knowledge acquisition possibilities.

DEVELOP A LOGICAL CHECKER FOR RULE VALIDATION

A static logical checker should be developed to assist in knowledge validation. This tool
would warn of inconsistencies between rules and indicate when a rule subsumes or is subsumed
by another. The tool would show in tabular form where objects, attributes, and values of
attributes were referenced in rules, whether on the right or the left. The tables created by this
tool would enable us to establish, using constraint relations, that all possible combinations of a
number of domain variables are covered by the existing rules and, thereby, identify "theoretical"
gaps in knowledge to check with the experts. The underlying assumption is that there should be
a rule which applies in each situation defined by all possible combinations of the domain
variables. Some combinations of the variables might not be meaningful, but a part of the
validation process is to establish that fact.

CONSIDERATIONS FOR FUTURE RESEARCH AND DEVELOPMENT

There are a number of areas that should be considered for future expert systems even if
there is little chance that the results could be applied to the ASPA project. The choices for
constructing improved techniques for knowledge acquisition include two broad classes of
approach. In one, the effort is to broaden the communication channel between the experts and
the system, while on the other, both the knowledge engineer and the expert are eliminated in
favor of permitting the system to discover knowledge on its own. Of course, combinations of the
above alternatives would also be possible.

BROADENING CHANNELS OF COMMUNICATION

To broaden the channels of communications between domain experts and evolving expert
systems, we could obtain or develop several items:

1. A smart editor

2. Improved metaknowledge of the domain

3. Static-knowledge analyzers

4. Execution-trace dialogues with experts

Smart editor. The construction of an editing facility which has built-in knowledge of the
ASPA's internal representational formalisms to allow rapid, error-free entry of information into
the knowledge-base cannot be expected to advance the field of known techniques for knowledge
acquisition, and provide minor improvements over brute-force coding, especially in the context
of the superior features of LOOPS.

37



Improved metaknowledge of the domain. The construction of a system with a
comprehensive structural knowledge of the mission-planning domain presupposes that the
metaknowledge reflecting this structure is known or is available to be collected first. We do not
know enough about the domain of the air-strike planner to make use of metaknowledge of this
kind in the early stages of KA for ASPA. Furthermore, we have no techniques for collecting it
manually, and it may be even more difficult to acquire domain metaknowledge from the experts
than to obtain domain knowledge. We do not expect to know enough about the structure on
this level until the system is nearly complete. However, using the metaknowledge gathered for
ASPA would be a viable approach for future systems to be built in related domains once ASPA
has been completed, much as EMYCIN was useful as an expert system shell for similar domains
after MYCIN was constructed.

Static-knowledge analyzers. The construction of a system to analyze the knowledge
currently in ASPA would be quite valuable for validation of that knowledge. There is a variety
of forms which the analyzer could take. At one level, all heuristic rules could be indexed by the
concepts which appear in them, by specific values of the variables which they contain, or by
their interactions where interactions could be defined in a lot of different ways. At another
level, entailment relations among variables and known constraints among them could be spelled
out for verification.

Execution-trace dialogues with experts. The construction of a system to support a dialogue
with mission planners and system developers, using explanations of the behavior of the system
drawn from traces of the inference paths, can be used to go beyond what static analyzers can
accomplish for validation. This approach, which was taken in the TEIRESIAS system, is most
suitable for the refinement of almost complete knowledge bases, and does not address the
general problem of knowledge acquisition.

However, this kind of system is most valuable for knowledge validation, system
maintenance, and enhancement, and needs to be considered seriously for ASPA if it is to
remain useful over an extended period.

ALLOWING THE SYSTEM TO DISCOVER KNOWLEDGE ON ITS OWN

1he second approach encompasses the possibilities of building a system to do the
following:

I. Perform induction from fully analyzed cases

2. Perform induction by analogy

3. Contain problem solving metaknowledge

4. Perform induction from expert judgements

I his approach includes possibly building a plan or partial plan generator and evaluator, and a
hierarchical planning system with key cases for induction of heuristics.
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Induction from analyzed cases. A system to perform induction from existing databases and
test case files has been developed by Michalski at the University of Illinois. Michalski's system
offers an arsenal of general purpose techniques that could be used to analyze typical cases and
expert judgements. However, this system will only work in a domain in which numerous fully
analyzed test cases are readily available or easily generated.

Plan or partial plan generator and evaluator. A system based on generate-and-test
problem solving would be a useful tool, but it is not likely to be computationally tractable for
ASPA unless it included heuristics to constrain searches. This means that much of the
knowledge would already have to have been acquired before the system was built.
Furthermore, the methods of representing plans and partial plans would have to be spelled out,
and methods for evaluating plans would have to be developed.

Hierarchical planning system with key cases for induction of heuristics. Another
alternative is the construction of a general purpose, layered, planning system within which
repeated refinement of the specifications and key mission planning cases provide the necessary
inputs for learning heuristics. Development of such a system would require some progress on
theoretical research issues and it would necessitate the integration of research results from
many places, particularly Pat Langley's work on SAGE (Langley, 1982) and work in an area
called explanation-based generalization or induction by analytical generalization. This would be
a large project.

Induction by analogy. The construction of a system which learns mission-planning
techniques by analogy may be a poor approach judging from a comment of CDR Russell (1984)
to the effect that it is better conceptually to start with a clean slate than with a standard plan
which is then modified. Of course, analogy is a learning mechanism in addition to a problem-
solving method, so analogy may still be an appropriate learning mechanism for the planning
domain. However, if humans have problems learning in this domain by analogy, it is likely that
there will be problems setting up a system to do so effectively. Another comment with respect
to mission planning is that mission planners must learn by doing, not by watching. If this
statement is correct, it may be difficult to set up the system to infer the planning processes by
setting up traces of what the mission planner types in at a terminal, say.

Problem-solving metaknowledge. The construction of a system built on knowledge of
problem-solving paradigms is another alternative for knowledge acquisition. In this case, the
problem-solving framework determines what knowledge is needed from the domain.

The problem with this approach in general is that the problem-solving framework is not
sufficiently specific to elicit detailed knowledge. However, systems built out of knowledge of
problem solving types such as constraint satisfaction could be of use in subdomains of ASPA.

Induction from expert judgements. The construction of a system to perform induction on
expert judgments was described above, but here I refer to not just judgements of cases, but
microjudgements of the sorts available in documentation such as JMEM in tabular form. The
information available in documents could provide a rich source of data for inductive techniques.
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PROPOSED KNOWLEDGE ACQUISITION TOOLi

A tool could be constructed for ASPA that would receive as input the constraint
relationships among domain concepts (variables) and produce as output "criticality" values to

p associate with concepts. These values may be mobilized to help organize the process of plan
construction. They can be used to order planning decisions. They can be used in selecting
variables and values within a variable for instantiation, a necessary process in filling out the
details of a plan during planning. The criticality values may be incorporated into the object
hierarchies and referred to as needed to determine rankings.

In addition, the criticality values could be built into future algorithms in several ways. They
could be considered as default values, which could be overridden by local recalculations, or
they could be used when final calculations of criticality are made for specific problems.

To generate the criticality values, designers of a general purpose KA tool can can draw -

upon the work of Sacerdoti (1974) on hierarchical planning and the work of Dechter (1985) and
Pearl et al. (1983) on constraint graph properties and the possibilities of converting some
constraint graphs to trees.

The users of this tool would be knowledge engineers and the tool's output can be used to
prompt and challenge domain experts.
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ACRONYMS

ACSL Analogue Concept Learning System (forerunner of EXPERT-
EASE)

ADVISE General purpose inference system, a colection of tools for
building expert systems

AGE Attempt to Generalize

ART Automated Reasoning Tool

ASPA Air Strike Planning Advisor

ATEST A knowledge-base refinement tool of the ADVISE system which
generates testing examples, runs them under a variety of
evaluation schemes, and checks for consistency and
completeness

AQ11/AQ15 Inductive learning programs based on the Aq algorithm for
producing minimal descriptions of classes

BACON A family of concept-learning programs which can discover laws
relating real-valued variables

CASNET Causal Association Network

CHECK Program to verify completeness and consistency (part of LES)

CLOT Blood-Clot Consultation System

CLUSTER/2 A conjunctive conceptual clustering program

COBWEB Conceptual clustering system that builds classification trees to
maximize inference abilities using Gluck and Corter's
category utility measure (Gluck and Corter, 1985)

DENDRAL Organic Chemical Analysis System

EMYCIN Essential MYCIN

ETS Expertise Transfer System

EXPERT Expert-system building tool with facilities to maintain test cases

to repeatedly analyze the system's performance

EXPERT-EASE Expert-system building tool for systems which perform
classification or diagnosis
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GEM Generalization of Examples by Machine

ID3 Non-incremental concept learning system that builds
sophisticated characterizations in the form of decision trees

IPS Instructible Production System

JMEM Joint Munitions Effectiveness Manual

K Knowledge

KA Knowledge Acquisition

KAS Knowledge-Acquisition System for PROSPECTOR

KEE Knowledge-Engineering Environment

KLASSIC Elaboration of KuBIC

KLAUS Knowledge Learning And Using Systems

KR Knowledge Representation

KuBIC Knowledge Base Interactive Classifier

LES Lockheed Expert System

LISP List Processing Language

LOOPS Lisp Object Oriented Programming System

MDX Medical Expert System that performs diagnoses related to
cholestasis

METADENDRAL Learning component for DENDRAL

MORE Knowledge-acquisition system based on diagnostic problem
solving

MRS Metalevel Representation System (formerly Modifiable
Representation System)

MYCIN Infectious disease consultation system

NanoKLAUS The first Knowledge Learning and Using System

ONCOCIN Oncology Outpatient Monitoring System
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OPS A family of general-purpose production system languages,

including OPS5 and OPS83

PRISM Program for Research Into Self-Modifying systems

PROLOG Programming in Logic

PROSPECTOR Mineral Prospecting Expert System

PUFF Pulmonary-Function Diagnosing System

RI (now XCON)

RLL Representation Language Language

ROGET A knowledge-acquisition system for classification problem-
solving tasks (named for the thesaurist)

ROSIE Rule-Oriented System for Implementing Expertise

RUMMAGE A hierarchical conceptual clustering program

SAGE Strategy Acquisition by Generalization of Examples

SEEK System for Experimentation with Expert Knowledge

STAGGER Increments! concept learning system which can handle noise and
track concept drift

TEIRESIAS Interactive knowledge-base refinement tool for MYCIN

UCLA University of California at Los Angeles

UNITS Frame representation language tool

XCON Expert Configurer of VAX 11/780 computer systems

XSEL Expert Selling Assistant
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APPENDIX A

METAKNOWLEDGE

A complete description of the kinds of knowledge that can be expected to need
representation in an expert system would be very long indeed. Following is a chart of types of
knowledge, along with an annotation to indicate who needs to know the knowledge of that
particular type, just to indicate the extent of the possible types of knowledge. The annotation in
the first column is to be interpreted as follows:

A - The knowledge acquirer must know.

E - The knowledge engineer must know.

S - The system must know.

Lower case indicates that it is not necessary for them to know, although it would be nice if they
did. An omitted annotation indicates that they need not know.

Who
Need Kind of Metaknowledge
Know

aes 1. K of how to solve problems (K of how to make other K useful). (This is K
common to all domains and to all problems.)

aes 2a. K about the importance of other K (possibly with respect to a variety of factors,
including goals, etc.).

aes 2b. K about the relative importance of other K (again possibly with respect to a
variety of factors, including goals, etc.).

aes 2c. K about the reasons for the importance of other K

AES 3. K about the reliability of other K.

Aes 4. K about the sources of other K and pertinent details about those sources. Types
of sources include:

a. Written vs oral.

b. Texts, notes, memos, official guidelines or communications, etc.

c. Tables, charts, drawings, maps, databases, etc.

d. Common sense.
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e. Experience.

f. Hearsay.

g. Courses or tutorials.

5. K about the limitations of current K (K about the extent of and type of
ignorance).

aEs a. K about what K is circumscriptively give-up-able (Columbus's egg solution).
(This includes assessing what in the statement of the problem may be
inaccurate and may need modification before an attempt is made to solve
the problem.)

ae b. K about the tenuousness of present theoretical frameworks (Neurath's
boat). ,,

Es c. K about what is combinatorially too inefficient to find out even though it
follows in principle from current K.

aEs d. K about the aptness of the model of the domain and, hence, about the range
of applicability of current K to the real world.

aES e. K that our model of the domain is inadequate in some respect(s) (e.g.,
Ptolemaic model of the universe is inadequate in explanatory power even
though solutions to problems could be devised in that model).

aEs f. K that we do not have a model of some aspect of the real world.

e g. K about the limitations of formalisms and how that effects what it is
possible to automate.

ae 6. K about the domain context of current K, e.g.:

a. Structure (hierarchical, etc.).

b. Complexity.

c. Type of boundary for the domain (fuzzy, amorphous, invisible, or crisp,
clean, exact boundaries).

d. Homogeneity of the domain (on a variety of parameters).

e. Axiomatizability of theories or models of the domain.

f. Levels of abstraction in the domain.
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Es 7. K about the current problem's context and the aptness of the current
formulation of the problem.

Es 8. K of the range of possible reformulations and restatements of the current
problem (the current description of the problem may make it considerably more
difficult (or even impossible] to solve).

eS 9. K of the state of the problem solving effort, e.g.:

a. Its progress.

b. Its goals, their precedence relations, and which ones remain to be satisfied.

c. Its milestones.

es 10. K of the branching factor for this problem (important for efficient search - a
search space with a high branching factor is more suited to backwards chaining
and other branching structures can be best suited to forward chaining or even
mixed chaining approaches).

AES 11. K of the place in the model or other theoretical framework of a given bit of
current K.

AEs 12. K of the interrelationships of other K.

AES 13. K of constraints on the solutions acceptable (e.g. official standards prohibiting
certain otherwise reasonable solutions).

aES 14. K about what K does not change after an action has occurred.

aEs 15. K about the representation of objects in the system.

aEs 16. K about the representation of functions in the system.

aEs 17. K about the representation of actions.

aEs 18. K about the representation of the effects of actions on the world.

aEs 19. K about the representation of time, duration, and simultaneity.

aEs 20. K about the representation of inference rules.

aEs 21. K about the representation of reasoning strategies.

es 22. K about how to abstract from current K to more general K.

es 23. K about limitations of the abstractable K.
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aes 24. K for directing the application of given K.

Aes 25. K about how to accumulate more K.

aEs 26, K about what aspects of current K need constant updating.

aEs 27. K about how to maintain K.

aEs 28. K about the human interface for the system and how to present K to the human
user.

aes 29a. K about the particular [current] user.

aes 29b. K about the user's:

a. Needs.

b. Style of interaction.

c. Level of expertise.

d. State of comprehension of the context of the current problem.

aEs 30. K about what problems are beyond the system's scope. (A system which
possesses this kind of K can gracefully back out of tackling problems rather than
falsely producing "solutions" which are not identified in any way as being of poor

quality.)I
aes 31. K of what K is explanatory material for answering certain questions (K of how to

construct explanations, how to use K in explanations).

es 32. K of how to instantiate general K (K of the range of values permissible for the
variables in generalities. This is the mathematical notion of domain).

aEs 33. K of time constraints on producing a solution to the problem.

aes, 34. K of what K to focus on to achieve a solution during different stages of the
problem solving effort.

aes 35. K of what K can be obtained by observation and what K must be inferred or
indirectly detected.

Es 36. K of all data structure relationships on which the system architect's design U

depends.

aes, 37. K of the types of measurement in the domain, e.g., are the scales of
measurement:
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a. Nominal?

b. Ordinal?

c. Interval?

d. Ratio?

aes 38 K of the dimensionality of scales used in the domain for measurement.

aes 39. K of expected measurement error.

Es 40. K of resources available to be expended on generating a solution to the problem.

Es 41. K about the representation of states.

Es 42. K about the representation of procedures.

Es 43. K about the representation of resources.

Es 44. K about the representation of activities.

Es 45. K about the representation of schedules, milestones, and time windows.

Es 46. K about the representation of goals.

Es 47. K about the representation of plans.

Es 48. K about the representation of causality.

aEs 49. K about the scope of applicability of other K.

a. Temporal.

b. Logical.

c. Problem situation specific.

e 50. K about frequency of use of other K.

ae 51. K about who discovered or detected the truth of a current piece of K (authority
for a current bit of K).

Es 52. K about the representation of priorities.

Es 53. K about the value of applying a current piece of K to problem solving.
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aes 54. K about the effect of perturbations in the accuracy of the K on the products of
using that K in problem solving (K about the importance of the accuracy of a
given bit of K).

aes 55. K about groupings of values for particular concepts which lead to identical
effects in the use of those concepts in handling problems (K of the effective
grainsize of domain variables).

aes 56. K of constraint graph relationships between other K.
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APPENDIX B

GENERAL KNOWLEDGE AND DOMAIN-SPECIFIC KNOWLEDGE

Here is a chart of types of general and domain specific knowledge along with the same kind
of annotation that was provided with the metaknowledge chart in Appendix A. Some of the
metaknowledge in Appendix A was also domain specific, so this is not meant as a dichotomy
with the types of knowledge presented. Again, the annotation in the first column is to be
interpreted as follows:

A - The knowledge acquirer must know.

E -The knowledge engineer must know.

S -The system must know.

Lower case indicates that it is not necessary for them to know, although it would be nice if they
did. An omitted annotation indicates that they need not know.

Who
Need Kind of General or Domain Specific Knowledge
Know

aes 1. K about planning in general (what is necessary for formulating plans in any

domain for any problem).

aes 2. K of goals.

aEs 3. K of interrelationships among goals:

a. Priorities.

b. Which goals are subgoals of other goals.

c. Which can be jointly satisfied by the same action or series of actions.

aES 4. K of the durations of particular events and actions.

aEs 5. K of what actions can occur in parallel (simultaneously).

AES 6. K of what decisions must be made.

aEs 7. K of the interrelationships between decisions which need to be made.

aES 8. K of what decisions may be postponed.

B-I

-, --,-,-,- -+ ,-.-'. ,'- - .+ ,+- --, ".,.'. "--" .." .+ ..+-.................................................-"....".-."-..."..-.-".-'.........."...."
, + J P , . d - °p , *" * • ' ,P," * *,,'+ . • o. -- * " °. q" K - ° dl~'l v :< .-- . IJ i,?t



aEs 9. K of what constitutes a good order for tackling the problem.

AES 10. K of what are the objects in the domain.

AES 1 Ia. K of the basic concepts (primitives) in the domain.

aes 1 1b. (K that these are the basic concepts (primitives) in the domain).

aES 12. K of locations and relative positions in space and time.

AEs 13. K of the reasoning strategies used in the domain, e.g., the role of the following in
solving problems in the domain of interest:

a. Analogy.

b. Decomposition and recombining.

c. Conjecturing.

d. Generalization.

e. Specialization.

f. Identification of limits.

g. Construction.

AES 14. K of the available actions to accomplish goals.

AES 15. K of constraints on possible actions.

aES 16. K of the effects of actions on the world.

aes 17. K of the interactions among objects in the domain.

AES 18. K of rules of thumb (and other shortcuts or aids to handling problems) used by
experts in solving problems in the domain.

es 19. K of probabilistic facts (as opposed to uncertain knowledge).

aES 20. K of the preconditions of actions.

aEs 21. K of in what situations particular actions are appropriate.

aEs 22. K of side effects of actions.

aes 23. K of random processes in the domain.
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aes 24. K of periodicities.

aes 25. K of feedback.

aes 26. K of controllability of the observables and the possibility for experimentation in
the domain.

aes 27. K of the types of tasks to be performed in the domain, e.g.:

a. Classificatory.

b. Predictive (what-would-happen-if).

c. Plan synthesis.

d. Detection.

e. Manipulation.

f. Speech understanding.

g. Image interpretation.

h. Design.

i. Diagnosis.

aes 28. K of sizes and shapes.

aes 29. K of resources.

aes 30. K of states, abstractions of states, and constraints on states.

aes 31. K of schedules.

aes 32. K of time windows.

aes 33. K of plans.

aes 34. K of procedures.
S.

aes 35. K of activities.

aes 36. K of situations.

aes 37. K of events.
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aes 38. K of causality, or other connections between events and situations in the
domain.

AES 39. K of relations and functions on objects in the domain.

aes 40. K of priorities.

I
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APPENDIX C

THE SIMPLEX AND KARMARKAR ALGORITHMS

Linear programming techniques offer ways to handle constraints on continuous variables
to obtain optimized solutions. The classical method for attacking these problems is the simplex
algorithm developed by George Danzig in the 1940s (Strang, 1986). This algorithm starts out
with a graphical representation of the problem, using all straight line functions, since the
constraints are linear, and steps along the edges of the allowed region, from one corner to the
adjacent one, moving between choices until the optimum one is found. The best choice is
always a corner since the programming problem is linear. In complex problems, this stepping
towards the solution is done in a multidimensional space (possibly even thousands of
dimensions may be involved) and solutions may take hundreds of hours to compute.

The Karmarkar algorithm is a new approach to solving complex realistic problems (Strang,
1986). It is at least 50 times faster than the simplex algorithm on problems with thousands of
constraints, and could become even better when fully developed. It has not been officially
published yet, but the key idea is to begin with a sphere inscribed in the allowed solution space
and to move to the point on the sphere where the desired quantity is optimized. Another sphere
is drawn around that point, again with the requirement that it be entirely within the solution
space and, hence, within the constraints of the original problem.

The relative advantage of Karmarkar's algorithm over the simplex algorithm grows as the
problems get bigger, since the first few steps of Karmarkar's approach can do as much as
thousands of simplex steps in a big problem. Various elaborations of Karmarkar's method
using projective transformations remap the problem dynamically so that the solution ends up at
the origin of the coordinate system. A variety of other tricks improve its run time efficiency.

The impetus to formulating the parameters of complex problems as linear programming
problems may be intense once these methods are fully developed and readily available. This is
another reason for acquiring knowledge of the constraint relations between continuous
variables for the air strike planning domain.

Example: Suppose, for the sake of argument, that the only constraints on a choice of
weapons are their weights and their cost, and that there are only two weapon types to consider,
A and B (figure C-I). In two dimensions, the problem can be represented graphically as shown
in figure C-I.
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Figure C-i. Comparison of Karmarkar and Simplex methods.
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APPENDIX D

REFERENCES KEYED TO SYSTEMS

References to works pertaining to the various systems, shells, and languages discussed in
this report are given in an abbreviated form in table D-1. Full references are given in the
reference section.

Table D- 1. Short-form references for systems and tools.

System, Tool
or Language Short references

ACLS Paterson and Niblett, 1982 (see also EXPERT-EASE).

ADVISE Michalski and Baskin, 1983; Boulanger, 1983; Michalski, Baskin, Seyler,
and Boulanger, 1984; Reinke, 1983; Rodewald, 1984.

AGE Aiello, Bock, Nii, and White, 1981; Aiello and Nii, 1981; Nii and Aiello,
1979; Hayes-Roth, Waterman, and Lenat, 1983.

AQI I Michalski and Chilausky, 1980a and 1980b; Chilausky, Jacobsen, and
Michalski, 1976; Michalski, 1983.

ART Clayton, 1984; Williams, 1984.

ATEST Michalski and Baskin, 1983; Michalski, Baskin, Seyler, and Boulanger,
1983.

ATTENDING Miller, 1984.

BABY Rodewald, 1984.

BACON Langley, Bradshaw, and Simon, 1983; Langley, Zytkow, Simon, and
Bradshaw, 1986.

CASNET Alty and Coombs, 1984; Kulikowski, 1983; Weiss and Kulikowski, 1981;
Weiss, Kulikowski, Amarel, and Safir, 1978.

CHECK Nguyen, Perkins, Laffey, and Pecora, 1985.

CLOT Bennett and Engelmore, 1984. %

CLUSTER/2 Michalski and Stepp, 1983.

COBWEB Fisher, 1986.
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Table D-1. Short-form references for systems and tools (continued).

System, Tool
or Language Short references

DUCK McDermott, D., 1984.

EMYCIN van Melle, Shortliffe, and Buchanan, 1981 and 1984; Hayes-Roth,
Waterman, and Lenat, 1983.

ETS Boose, 1984; Boose, 1985a and 1985b; Shaw, 1980, 1981, and 1984; Gaines
and Shaw, 1981.

EXPERT Kulikowski, 1983; Weiss and Kulikowski, 1979, 1981 and 1984; Weiss,
Kern, and Kulikowski, 1980; Hayes-Roth, Waterman and Lenat, 1983.

EXPERT-EASE Perrone, 1983.

FRL Goldstein and Roberts, 1979.

GEM Michaiski and Baskin, 1983; Michalski, Baskin, Seyler, and Boulanger,
1984; Paterson, 1983.

GODDESS Pearl, Leal, and Saleh, 1982.

HEARSAY Ii Erman, London, and Fikas, 1981; Hayes-Roth, Waterman, and Lenat,
1983.

HPRL Lanam, Letsinger, Rosenberg, Huyun, and Lemon, 1984; Rosenberg, 19t3.

ID3 Quinlan, 1979, 1983a and b, 1986.

IPS Rychener, 1981 and 1983.

KAS Reboh, 1979 and 1981; Hayes-Roth, Waterman, and Lenat, 1983.

KEE Kehler and Clemson, 1984; Kunz, Kehler, and Williams, 1984.

KLASSIC Finin, unpublished.

KRL Bobrow and Winograd, 1977.

KuBIC Finin and Silverman, 1984; Silverman, 1984.

LEX Michell, Utgoff, and Banerji, 1983.

LOOPS Bobrow and Stefik, 1983; Stefik, Bobrow, Mittal, and Conway, 1983.
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Table D-1. Short-form references for systems and tools (continued).

System, Tool
or Language Short references

MDX Chandresekaran and Mittal, 1983; Mittal and Dym, 1985.

METADENDRAL Lindsay, Buchanan, Feigenbaum, and Lederberg, 1980; Buchanan and
Feigenbaum, 1978; Buchanan and Shortliffe, 1984.

MORE Kahn, Nowlan, and McDermott, 1984 and 1985.

MRS Genesereth, 1983a 1983b and 1984.

MYCIN Buchanan and Shortliffe, 1984; Davis, Buchanan, and Shortliffe, 1977;
Shortliffe, 1976.

NANQKLAUS Haas and Hendrix, 1983.

ONCOCIN Buchanan and Shortliffe, 1984; Langlotz and Shortliffe, 1983, Suwa, Scott,
and Shortliffe, 1982; Shortliffe, 1981.

OPS Forgy and McDermot, 1977.

OPS5 Brownston, Farrell, Kant, and Martin, 1985; Forgy, 1981; Hayes-Roth,
Waterman, and Lenat, 1983.

OPS83 Forgy, 1984.

PLANT/CD Boulanger, 1983.

PLANT/ds Michalski, Davis, Bisht, and Sinclair, 1983; Michalski and Chilauski,
1980a and 1980b.

PRISM Langley, 1983b and 1985; Ohlsson and Langley, 1986.

PROLOG Robinson, 1979; Clocksin and Mellish, 1982; Bratko, 1986; Walker,
McCord, Sowa, and Wilson, 1987.

PROSPECTOR Duda, Gaschnig, and Hart, 1979; Duda and Reboh, 1984; Gaschnig, 1982;
Hart and Duda, 1977.

PUFF Aikins, Kunz, Shortliffe, and Fallat, 1983;, Hayes-Roth, Waterman, and
Lenat, 1983; Freiher, 1980.U

RLL Greiner and Lenat, 1980a and b; Hayes-Roth, Waterman, and [enat, 1983.
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Table D-1. Short-form references for systems and tools (continued).

System, Tool
or Language Short references

RI McDermott, J., 1981, 1982a, and 1984; Rosenbloom, Laird, McDermott,
Newell, and Orciuch, 1984.

ROGET Bennett, 1984.

ROSIE Hayes-Roth, Klahr, and Mostow, 1981; Hayes-Roth, Waterman, and
Lenat, 1983; Fain et al., 1981.

RUMMAGE Fisher, 1984.

SACON Bennett and Engelmore, 1984; Buchanan and Shortliffe, 1984.

SAGE Langley, 1982 and 1983a.

SALT Marcus, McDermott, and Wang, 1985.

SEEK Politakis, 1982; Politakis and Weiss, 1982 and 1984.

SEEK2 Ginsberg, Weiss, and Politakis, 1985.

STAGGER Schlimmer and Granger, 1986.

TEIRESIAS Davis, 1976, 1978 and 1979; Davis and Lenat, 1982.

UNITS Stefik, 1979.

XCON McDermott, J., 1982b and 1984.

XSEL McDermott, J., 1982a.
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